Kompiuterių raida

Pirmuosius mechaninius skaičiavimo įrenginius dar antikos laikais naudojo matematikai, inžinieriai bei prekeiviai. Kinijoje ir Japonijoje prieš keletą tūkstančių metų iki Kristaus gimimo jau buvo naudojami skaičiuotuvai, padaryti iš karoliukų, pritvirtintų prie specialaus rėmo (karoliukai vadinosi kalkulėmis), iš čia ir kilo terminai “kalkuliuti” ir “kalkuliatorius”. Ant siūlo suvertų kalkulių pozicija atitiko tam tikrą skaičių.

Pirmoji skaičiavimo priemonė rankų ir kojų pirštai. Vėliau imta naudoti įvairius daiktus: lazdas su įpjovomis, virves su mazgais. Pagaliau atsirado abakas ( Va. pr.Kr. ) – lenta su skirsniais. Abakas buvo naaudojamas ilgai – beveik visa žmonijos istorija mini jį. Kiekviena šalis ką nors tobulindavo, keisdavo. Tik daug vėliau ėmė rastis mechaninės mašinos.

Vieną iš tobulesnių mechaninių kalkuliatorių 1642 metais sukūrė prancūzų mokslininkas Blezas Paskalis. Šį įrenginį, pavadintą “Paskalina”,sudarė ratukai, ant kurių buvo užrašyti skaičiai nuo 0 iki 9. Apsisukęs vieną kartą, ratukas užkabindavo gretimą ratuką ir pasukdavo jį per vieną skaičių.

Pagrindinė “Paskalinos” yda – labai sudėtingas įvairių operacijų, išskyrus sudėtį, atlikimas. Pirmąją mašiną, kuria lengvai atliekami visi keturi veiksmai , 1673 metais sukūrė vokietis Gotfrydas Vilhelmas Leibnicas.

Anglų matematikas Čaarlzas Babidžas, sugalvojęs dvi reikšmingiausias mechanines skaičiavimo mašinas, dažnai vadinamas šiuolaikinės technikos “tėvu”. Pirmąją mašiną, skirtą matematiniu lentelių sudarymui ir tikrinimui (skaičiuojant skaičių skirtumą), Č. Babidžas sukūrė 1822 metais. Ji vadinosi skirtuminė mašina. 1833 m. jis nutarė sukurti universalią skaičiavimo mašiną ir pavadino ją

ą “analizine mašina”. Tačiau realizuoti analizinę mašiną buvo labai problematiška – galiausiai ji būtų buvusi ne mažesnė už garvežį. Todėl ši mašina nebuvo sukurta. Č. Babidžas nepateikė nė vieno išsamaus jos aprašymo. Tačiau aprašymas buvo išsuogotas jo bendradarbės, grafienės, Augustos Ados Bairon-Lavleis dėka. Grafienė Ada Lavleis vadinama pirmąja programuotoja. Jos garbei viena iš programavimo kalbų pavadints Ada.

Č. Babidžo nuopelnas yra tas, kad analizinėje mašinoje jis pritaikė komponentus, kurie yra svarbiausi ir šiuolaikiniame kompiuteryje. Jis pirmasis suprati, kad skaičiavimo mašiną turi sudaryti penki pagrindiniai komponentai:
1. įvesties įrenginys,
2. atmintis,
3. aritmetinis,
4. valdymo įrenginys,
5. išvesties įrenginys.

Amerikietis Hermanas Holeritas 1890 metais laimėjo efektyvaus gyventojų surašymo duomenų apdovanojimo konkursą. Jis taip pat naudojo perfokoltas. H. Holerito tabuliatorius tapo pirmąja skaičiavimo mašina, veikiančia ne mechaniniu procesų pagrindu. Ji pasirodė esanti labai efektivi, ir tai leido įssteigti firmą, gaminančią tokius tabuliatorius. Nuo 1924 metų iki dabar ji vadinasi IBM (International Business Machines) ir yra viena stambiausių kompiuterius gaminančių firmų.

Vokiečių inžinierius Konradas Cūzė paekperimentavęs su dešimtaine skaičiavimo sistema, vis dėlto pasirinko dvejetainę. Nors ir nesusipažino su anglų matematiko Džordžo Būlio logika, leidžiančia atlikti elementarius veiksmus su dvejetainiais skaičiais, K. Cūzė 1936 metais sukūrė skaičiavimo mašiną Z – 1, kurioje buvo pritaikyti Dž. Būlio algebros principai. Vėlesniame modelyje Z – 2 vietoje mechaniniu jungiklių jungiklių jis panaudojo elektromechanines reles, o informacijai įvesti pritaikė perforuotą 35

5 mm pločio fotojuostą (vėliau ją pakeitė popierine).

1941 metų pabaigoje, JAV įstojus į karą, IBM firmos prezidentas pasiūlė Amerikos prezidentui savo paslaugas ir 1944 metais firma pagamino gana galingą kompiuterį “Mark – 1”, turintį apie 750 tūkstančių dalelių, tarp jų 3304 elektromechanines reles.

1943 metų pabaigoje Anglijoje ėmė veikti didelė skaičiavimo mašina “Colossus – 1”, skirta vokiečių šifrogramoms dešifruoti.

Berlyne K. Cūzė sukonstravo Z – 3 ir pradėjo projektuoti Z – 4, kurioje vietoj elektromechaninių relių turėjo būti panaudotos vakuuminės elektroninės lempos. Tai būtų leidę gerokai padidinti mašinos greitį. Tačiau A. Hitleris nepalaikė šio projekto, tikėdamasis labai greitai nugalėti.

Nors pirmosios elektroninės skaičiavimo mašinos projektą sukūrė JAV mokslininkas Džonas Atanosovas dar 1939 metais, tačiau tik 1945 metų pabaigoje JAV buvo sukurta galinga, grynai elektroninė mašina ENIAC (Electronic Numerical Integrator, Analyser and Calculator), kurioje sumontuotos 17468 elektroninės lempos.

1947 metais Kembridže Morisas Vilksas sukonstravo mašiną EDSAC (Electronic Delay Storge Automatic Calculator). Skirtingai negu kitos, ji rėmėsi nauja programavimo aprūpinimo strategija, taigi naudojo standartines, dažnai skaičiavimams taikomas programas ir įrangą programų klaidoms aptikti.

Kompiuterių kartos:
Pirmoji karta. Vakuuminės lempos. ENIAC kompiuteris

Kompiuteris ENIAC – elektronis skaitmeninis integratorius ir skaičiuotuvas {Electronics Numerical Integrator And Computer} buvo sukurtas vadovaujant Džonui Makliui (John Mauchly) ir Džonui Ekertui (John Presper Eckert) Pensilvanijos universitete (JAV) ir yra pirmasis pasaulyje bendrosios paskirties elektroninis skaitmeninis kompiuteris.

Šis projektas – atsakas į JAV poreikius antrojo pasaulinio karo metu. JAV karinių pa

ajėgų Balistikos tyrimų laboratorijai (BTL), atsakingai už trajektorijų lentelių naujiesiems ginklams rengimą, buvo labai sunku tiksliai ir per trumpą laiką jas parengti. Be jų naujieji ginklai kariškiams buvo beverčiai. BTL samdydavo daugiau kaip 200 žmonių, daugiausia moterų, šie staliniais mechaniniais kalkuliatoriais spręsdavo įvairias balistikos lygtis. Tam tikro ginklo lentelei parengti vienas žmogus dirbdavo daug valandų ir net dienų.

Pensilvanijos universiteto elektrotechnikos profesorius Dž. Maklis ir vienas iš jo doktorantų Dž. Ekertas pasiūlė BTL tikslams iš elektroninių lempų sukurti bendrosios paskirties kompiuterį. 1943 m. šis pasiūlymas JAV kariuomenės buvo priimtas, ir prasidėjo ENIAC kūrimo darbai. Sukurtoji mašina priminė monstrą – svėrė 30 tonų, užėmė 1600 m2 patalpos, joje buvo per 18 000 vakuuminių elektroninių lempų. Ji išeikvodavo apie 140 KW elektros galios, tačiau veikė žymiai sparčiau už bet kurį elektromechaninį kompiuterį – galėjo atlikti 5000 sudėties operacijų per sekundę.

ENIAC – dešimtainė, o ne dvejetainė mašina. Skaičiai joje buvo pateikiami dešimtaine forma ir taikoma dešimtainė aritmetika. Jos atmintį sudarė 20 vadinamųjų kaupiklių {accumulator}, kiekvienas jų galėjo saugoti iki 10 dešimtainių skaičių. Kiekvienam skaičiui atvaizduoti naudotas žiedas iš 10 vakuuminių lempų. Tam tikru momentu tik viena iš lempų būdavo įjungta ir būdavo atvaizduojamas vienas iš 10 skaitmenų. Pagrindinis trūkumas tai, kad ENIAC kompiuterį programuodavo rankiniu būdu jungdami arba išjungdami jungiklius ir perjungdami kontaktus laidžiais trumpikliais.

ENIAC pagamintas 1946-aisiais metais – per vė
ėlai, kad būtų panaudotas kare. Tad pirmasis jo uždavinys – sudėtingų skaičiavimų serija, kuri padėjo nustatyti principinę vandenilinės bombos pagaminimo galimybę. ENIAC kompiuterio taikymas kitiems, nei buvo numatyta, tikslams įrodė jo bendrosios paskirties pobūdį. 1946-ieji – tai įžengimas į naują – elektroninių kompiuterių erą. ENIAC, veikęs BTL iki 1955-ųjų, buvo išmontuotas.

Noimano (skaičiavimo) mašina

Programų įvedimas arba jų modifikavimas ENIAC kompiuteryje buvo nuobodus ir varginantis procesas. Programavimą galima buvo palengvinti tik pačią programą pateikiant patogiu atmintyje kartu su duomenimis saugoti pavidalu, instrukcijas kompiuteriui teikiant juo pačiu – jam skaitant iš atminties, o programas įvedant arba keičiant atminties fragmentuose nustatant tam tikras reikšmes.

Ši idėja, žinoma kaip įsimenamos programos koncepcija {stored-program concept}, dažniausiai siejama su ENIAC kompiuterio kūrėjais, ypač su matematiku Džonu von Noimanu (John von Neumann), ENIAC projekto konsultantu. Ją maždaug tuo pačiu laiku plėtojo ir Tiūringas (Turing). Žinią apie šios idėjos pritaikymą (Electronic Discrete Variable Computer – EDVAC kompiuteryje) pirmą kartą viešai paskelbė Noimanas 1945 m.

1946 m. Noimanas kartu su savo kolegomis Prinstono pažangiųjų studijų institute (Princeton Institute for Advanced Studies) ėmėsi kurti naują kompiuterį IAS pavadinimu. Šis kompiuteris buvo baigtas tik 1952 m. ir yra visų vėlesnių bendrosios paskirties kompiuterių prototipas.
1.7 pav. pateikta IAS kompiuterio apibendrinta struktūra. Pagrindinės komponentės:
• Pagrindinė atmintis, sauganti ir duomenis, ir instrukcijas;
• Aritmetinis ir loginis įrenginys (ALĮ), galintis operuoti dvejetainiais skaičiais.
• Valdymo įrenginys, interpretuojantis atmintyje esančias instrukcijas ir kontroliuojantis jų vykdymą.
• Įvesties ir išvesties (Į/I) įrenginys, kurio veikimą taip pat kontroliuoja valdymo įrenginys.

Ši struktūra Noimano pasiūlyta anksčiau ir jos apibūdinimą čia verta pacituoti [1]:

Pirma: Kadangi įrenginys (kompiuteris) visų pirmą yra skaičiuotuvas {computer}, jis turi gebėti atlikti dažniausiai pasitaikančias elementarias aritmetines operacijas, t. y. sudėties, atimties, daugybos ir dalybos: +, –, ´, ¸. Todėl labai naudinga, kad jame būtų specializuoti šias operacijas atliekantys organai.

Nepaisant to, kad kol kas šis principas tėra tik tuščias garsas, specifiniam būdui, kuriuo jis bus įgyvendintas, reikia skirti daugiau dėmesio. Bet kuriuo atveju centrinė aritmetinė {Central Arithmetic – CA} dalis įrenginyje turėtų būti. Taigi deklaruotina jo (kompiuterio) pirmoji specifinė dalis – CA.

Antra: Įrenginio (kompiuterio) veikimo logiką, t. y. tikslų jo operacijų nuoseklumą, efektyviausiai gali valdyti centrinis valdymo organas. Jeigu įrenginio (kompiuterio) veikimas pasižymės lankstumu, t. y. kompiuteris atitiks visas įmanomas paskirtis, tuomet reikės atskirti specifiškas instrukcijas, numatytas specialioms užduotims spręsti, nuo bendrųjų valdymo organų, kurie šias instrukcijas gauna ir vykdo nesigilindami, kas jos iš esmės yra. Minėtos instrukcijos turi būti tam tikru būdu įsimenamos, o valdymo organai yra įrenginio (kompiuterio) tam tikros veikiančios dalys. Taigi centriniu valdymu {Central Control – CC} vadinsime tik šias pastarąsias funkcijas atliekančius organus, ir jie sudaro antrąją specifinę dalį – centrinį valdymą – CV.

Trečia: Kiekvienas įrenginys, atliekantis ilgas ir sudėtingas operacijų sekas (ypač skaičiavimus), turi turėti pakankamai atminties.
a) Instrukcijoms, kurios valdo sudėtingą uždavinį, būtina daug informacinės medžiagos, ypač tada, kai kodas yra labai išsamus (detalus, o taip dažniausiai ir būna daugelyje uždavinių). Ši medžiaga turi būti įsimenama.
Bet kuriuo atveju atminties būtinumas lemia trečiąją įrenginio specifinę dalį – atmintį – A {Memory – M}.

Trys specifinės dalys – CA, CV ir A atitinka asociatyvųjį žmogaus nervųsistemos neuroną. Dar liko neaptarti sensorinių arba jautriųjų ir motorinių, arba varomųjų neuronų ekvivalentai. T. y. įrenginio (kompiuterio) įvesties ir išvesties organai.

Turi būti užtikrinti įrenginio įvesties ir išvesties (sensoriniai ir motoriniai) kontaktai su tam tikra specifine išorine aplinka. Ši aplinka gali būti vadinama įrenginio išorine įrašymo terpe – R {Recording medium – R}.

Ketvirta: Įrenginys turi turėti organus, transformuojančius informaciją iš R terpės į jo specifines CA, CV ir A dalis. Šie organai formuoja jo įvestį {input}, ketvirtąją specifinę dalį – Į {input – I}. Atrodo natūralu, kad geriausia visas transformacijas daryti iš R (taikant Į) į A ir niekada tiesiogiai į CA ar CV .

Penkta. Įrenginys turi turėti organus, transformuojančius informaciją iš jo specifinių CA, CV ir A dalių į R. Šie organai formuoja jo išvestį. Tai penktoji specifinė dalis – I {Output – O}. Ir vėl turėtų būti natūralu, kad geriausia visas transformacijas daryti iš A (taikant I) į R, ir niekada tiesiogiai iš CA ar CV.
Antroji kompiuterių karta. Tranzistoriai

Pirmasis esminis elektroninių kompiuterių keitimasis įvyko, kai vakuumines lempas pakeitė tranzistoriai. Tranzistoriai mažesni, pigesni ir išskiria mažiau už vakuumines lempas šilumos, tuo pat metu kompiuteriuose gali vykdyti tas pačias funkcijas.

Tranzistorius sukurtas ,,Bell Labs“ kompanijoje 1947 m., tačiau tik 6-ojo dešimtmečio pabaigoje pagaminti pirmieji tranzistoriniai kompiuteriai. Pirmuosius komercinius tranzistorinius kompiuterius pristatė NCR bei RCA kompanijos ir šiek tiek vėliau IBM – 7000-ąją kompiuterių šeimą.

Tranzistorių taikymas būdingas antrosios kompiuterių kartos bruožas. Kompiuterius priimta klasifikuoti į kartas pagal fundamentines techninės įrangos {hardware} technologijas (1.1 lentelė). Kiekvienai naujajai kartai būdinga didesnė sparta, talpesnė atmintis ir mažesni matmenys.

1. Lentelė. Kompiuterių kartos
Karta Apytikrės datos Technologija Sparta (operacijų per sekundę)
1-oji 1946–1957 vakuuminės lempos 40 000
2-oji 1958–1964 tranzistoriai 200 000
3-oji 1965–1971 mažos ir vidutinės integracijos mikroschemos 1 000 000
4-oji 1972–1977 didelės integracijos mikroschemos 10 000 000
5-oji 1978– labai didelės integracijos mikroschemos 100 000 000

Be technologijų, yra ir kitų pokyčių. Antroji kompiuterių karta pasižymėjo sudėtingesniais aritmetikos ir logikos bei valdymo įrenginiais, aukšto lygio programavimo kalbų taikymu ir tuo, kad su kompiuteriais buvo teikiama programinė įranga.

Antroji kompiuterių karta taip pat siejama su ,,Digital Equipment Corporation“ (DEC) įkūrimu 1957 m. Tais metais DEC pristatė PDP-1 kompiuterį, kuris iš esmės buvo pirmas minikompiuteris ir trečiosios kompiuterių kartos pirmtakas.
IBM 7094 kompiuteris

Pradedant 700-osios serijos (1952 m.) ir baigiant paskutiniuoju 7000-osios serijos (1964 m.) modelių IBM kompanijos kompiuteriais akivaizdi būdinga kompiuterių evoliucija. Šių kompiuterių raida apibūdinama kompiuterių pajėgumo didėjimu, galimybių plėtra arba kainos mažėjimu.

Kaip matyti iš 1.2 lentelės, pagrindinės atminties (organizuotos iš 36 bitų žodžių) talpa padidėjo nuo 2K (1K = 210) iki 32K žodžių, o kreipties į vieną žodį atmintyje trukmė (atminties ciklo trukmė) sumažėjo nuo 30 ms iki 1,4 ms. Operacijų kodų padaugėjo nuo 24 iki 185. Paskutiniame 1.2 lentelės stulpelyje pateikta santykinė CPĮ sparta. Ji padidėjo patobulinus elementinę bazę (tranzistoriai spartesni už lempas) ir pagerinus (tapo sudėtingesnė) schemotechniką. Pavyzdžiui, IBM 7094 kompiuteryje pritaikytas atsarginės instrukcijos registras {Instruction Backup Register – IBR}, kuris atlieka kitos išrenkamos instrukcijos buferio funkciją. Per išrankos ciklą valdymo įrenginys iš atminties nuskaito du greta esančius žodžius. Tai reiškia, kad, išskyrus šakojimosi {branch} instrukcijas, kurios pasitaiko ganėtinai retai, valdymo įrenginys vienai instrukcijai pasirinkti eikvoja tik pusę instrukcijos ciklo. Dėl šios išankstinės išrankos žymiai mažėja vidutinis instrukcijos ciklas.

Trečioji kompiuterių karta. Integrinės schemos

Pavienius tranzistorius vadina diskrečiaisiais elementais. XX a. 5-ajame dešimtmetyje ir 6-ojo pirmoje pusėje elektroninė aparatūra buvo montuojama iš diskrečiųjų elementų – tranzistorių, rezistorių, kondensatorių ir pan. Visas gamybos procesas nuo tranzistoriaus pagaminimo iki spausdintos plokštės surinkimo buvo labai brangus ir ilgai trukdavo.

Dėl to kompiuterių industrijoje kilo problema. Pirmuosiuose antrosios kartos kompiuteriuose buvo apie 1000 tranzistorių. Vėliau jų padaugėjo iki šimtų tūkstančių ir kėlė dar daugiau problemų gaminant naujausius ir pajėgiausius kompiuterius.

1958 m. išrasta integrinė mikroschema padarė revoliucinį perversmą visoje elektronikoje. Ji apibūdina trečiosios kartos kompiuterius. Šiame poskyryje aptarsime du labai svarbius trečiosios kartos modelius: IBM kompanijos System/360 ir DEC kompanijos PDP-8 kompiuterius.
IBM System/ 360 kompiuteris

Iki 1964 m. IBM kompanija gamino ir pardavinėjo 7000-osios serijos kompiuterius. Tais metais IBM pristatė System/360 – naują kompiuterių šeimą. Paskelbimas nebuvo didelė staigmena, tik trikdė kelios anų laikų IBM produktų vartotojams nemalonios ,,naujienos“: System/360 linijos produktai nesuderinami su ankstesniais IBM kompiuteriais. Tai buvo nepopuliarus IBM kompanijos žingsnis, tačiau norint atsikratyti kai kurių 7000-osios serijos architektūros trūkumų jį reikėjo vieną kartą žengti ir pereiti prie naujos integrinių schemų technologijos. System/360 kompiuterių konstrukcija pasirodė labai tobula ir IBM perėmė apie 70% visos kompiuterijos rinkos. Atlikus tam tikras modifikacijas ir išplėtus System/360 architektūra dideliuose IBM kompiuteriuose išliko iki šiol.

System/360 – pirmoji suplanuotoji kompiuterių šeima, kurioje buvo labai įvairaus našumo ir kainų modelių. 1.3 lentelėje pateikti 1965 m. kompiuterių modelių parametrai. Visi modeliai suderinami programiškai, t. y. programa sudaryta vieno modelio kompiuteriui, veikia ir kito modelio kompiuteryje, skiriasi tik jos vykdymo trukmė. Pagrindiniai kompiuterių šeimos bruožai:
Panašios arba identiškos instrukcijos. Tam tikrą griežtai apibrėžtą kompiuterinių (mašininių) instrukcijų rinkinį turi visi šeimos modeliai. Taigi programa, sukurta vienam kompiuteriui, veiks ir bet kuriame kitame. Tam tikrais atvejais žemesniojo lygio šeimos modeliams tenka nepilnas instrukcijų rinkinys, o aukštesniojo lygio – pilnas. Taigi programinis suderinamumas esti ,,iš viršaus“ ,,žemyn“, bet ne atvirkščiai.
Panašios arba identiškos operacinės sistemos. Visuose šeimos modeliuose taikomos tos pačios operacinės sistemos arba aukštesnio lygio modeliuose – išplėstų galimybių operacinės sistemos.
Didėjanti sparta. Instrukcijų atlikimo sparta pereinant nuo žemesniojo prie aukštesniojo modelių lygio didėja.
Į/I prievadų {ports} skaičiaus didėjimas pereinant nuo žemesniojo prie aukštesniojo modelių lygio.
Atminties talpos didėjimas pereinant nuo žemesniojo prie aukštesniojo modelių lygio.

Vėlesnės kompiuterių kartos

Po trečiosios kompiuterių kartos vis sunkiau prieinama bendro susitarimo dėl kompiuterių klasifikavimo pagal kartas. 1.1 lentelėje matyti, kad yra ir ketvirtoji, ir penktoji kompiuterių kartos, pagrįstos integrinių schemų technologija. Didelės integracijos schemose viename integrinės schemos {Large-Scale-Integration – LSI} luste galima suformuoti per 1 000 elementų. Labai didelės integracijos schemose {Very-Large-Scale-Integration – VLSI} išdėstoma daugiau nei 10 000 elementų, o dabartiniuose VLSI lustuose jų galima suformuoti per milijoną.

Sparčiai besivystant gamybos technologijoms, dažnai atsirandant naujų produktų, didėjant programinės įrangos ir telekomunikacijų svarbai, kompiuterių klasifikavimas pagal kartas tampa netikslus ir mažiau svarbus. Galima teigti, kad naujovės, įdiegtos kompiuterijoje praeito amžiaus 8-ajame dešimtmetyje, turi įtakos iki šiol. Čia paminėsime tik dvi iš šių naujovių.
Puslaidininkinė atmintis

XX a. 6-ajame ir 7-ajame dešimtmečiuose kompiuterių pagrindinė atmintis būdavo konstruojama iš mažų (skersmuo neviršijo 2 mm) feromagnetinių žiedelių (šerdelių). Šerdeles įnerdavo į plonų vielučių tinklelį – suformuodavo atminties matricą. Ji buvo talpinama į magnetinį ekraną ir išdėstoma kompiuteryje. Žiedelis {core}, įmagnetintas viena kryptimi, atitikdavo vienetą; įmagnetintas priešinga kryptimi – nulį. Magnetinė atmintis buvo palyginti sparti – bito skaitymas iš atminties trukdavo trumpiau nei 1 ms, tačiau brangi, griozdiška, taikyta destruktyvus skaitymo mechanizmas: kreiptis į šerdelę sunaikindavo jame esančius duomenis. Todėl taikyta specialios schemos, atstatančios perskaitytuosius duomenis.

1970 m. ,,Fairchild“ kompanija pagamino pirmą palyginti talpią atminties mikroschemą. Lustas, kurio matmenys neviršijo vienos šerdelės matmenų, galėjo saugoti 256 bitus. Skaitymas nebuvo destruktyvus ir vyko daug sparčiau nei magnetinėje atmintyje. Bito skaitymas trukdavo apie 15 ns. Tačiau vienas bitas atsiėjo daugiau nei atminčiai esant iš šerdelių („korinė“ atmintis).

Puslaidininkinės atminties gamybos technologija nuolat tobulėjo, ir 1974 m. puslaidininkinės atminties vienas bitas tapo pigesnis nei magnetinės atminties.

Nuo 1970 m. puslaidininkinės atminties raidoje pasikeitė aštuonios kartos: 1K, 4K, 16K, 64K, 256K, 1M, 4M, ir dabar esti 16M bitų viename luste. Kiekviena nauja karta keturgubino atminties talpą, mažino vieno bito kainą ir kreipties trukmę.
Mikroprocesoriai

Didėjant elementų tankiui atminties mikroschemose, didėjo elementų tankis ir procesoriaus lustuose. Laikui bėgant vis daugiau elementų buvo išdėstoma viename luste ir vis mažiau lustų reikėjo kompiuterio procesoriaus konstrukcijoje.

Lemiamas lūžis įvyko 1971 m., kai ,,Intel“ kompanija sukūrė i4004 mikroschemą. i4004 – pirmas lustas, kuriame buvo išdėstytos visos CPĮ komponentės – sukurtas mikroprocesorius.

I4004 mikroprocesorius galėjo sudėti du 4 bitų skaičius, o daugyba buvo atliekama atitinkamai kartojant sudėties operaciją. Pagal dabartinius reikalavimus i4004 mikroprocesorius labai primityvus, tačiau juo prasidėjo mikroprocesorių evoliucija.

Mikroprocesorių evoliucija akivaizdžiausia pagal bitų, kuriuos procesorius gali vienu metu apdoroti, skaičių. Šio skaičiaus tikslaus mato nėra, tačiau galbūt geriausiai tai atspindi procesoriaus išorinės magistralės plotis. Kitu matu gali būti akumuliatoriaus arba bendrosios paskirties registrų bitų skaičius. Kartais šie skaičiai sutampa, bet ne visada. Pavyzdžiui mikroprocesorius gali operuoti 16 bitų skaičiais, tačiau vienu metu nuskaityti arba įrašyti tik 8 bitus

Pramoninių asmeninių kompiuterių istorija prasidėjo 1971 metais, kai du amerikiečiai Stivenas Džobsas ir Stivas Vozniakas garaže surinko kompiuterį, kurį pavadino “Apple”. (Taip pat 1971 metais buvo sukurtas pirmasis asmeninis kompiuteris “Kenbat – 1”, kurio parduota tik 40 vienetų.) Tuoj pat tokių kompiuterių įsigeidė Džobso ir Vozniako draigai. Vaikinai įkūrė firmą, ir jau 1976 metais rinkoje pasirodė pirmasis pramoninis asmeninio kompiuterio variantas “Apple – 2”.

Populiariausi iš jų yra IBM PC asmeniniai kompiuteriai. Firma IBM, anksčiau gaminusi dideles skaičiavimo mašinas, 1981 metais išleido asmeninį kompiuterį IBM PC, kuris ir tapo pirmuoju populiariausiu profesiniu asmeniniu kompiuteriu. Plėtojantis mokslui ir technikai, firmos IBM pirmtaką PC keitė kiti, tobulesni, modeliai: IBM PC/XT (1983 metai), kuriame pirmą kartą įmontuotas kietasis 10 MB atminties diskas; IBM PC/AT (1984 metai), PS/2 serijos modeliai 30, 60, 70, 80, . (1987 metai). Nuo 1993 metų gaminamas kompiuteris su “Pentium” procesoriumi (AT586). 1985 metų sukurtos grafinės vartotojo sąsajos priemonės “MS Windows”, kurių naujausi variantai “Windows 95” ir “Windows 98” leidžia atsisakyti operacinės sistemos MS – DOS. Dabar vis plačiau taikomi labai didelės talpos optiniai kompaktiniai diskai (CD ROM) ir daugialypė terpė.

Lietuvoje kompiuteriai pasirodė baigiantis šeštajam dešimtmečiui. Jie buvo lempiniai, labai dideli, nepatikimi, be to, sudėtinga ir brangi jų eksploatacija. 1960 metais pirmąjį kompiuterį įsigijo Mokslų Akademijos Fizikos ir Matematikos institutas. 1963 metais Vilniaus universitete ir Kauno politechnikos institute (dabar KTU) ėmė veikti kompiuteriai “Minsk – 14”, o nuo 1971 metų – “Minsk – 22”. 1964 metais Vilniaus skaičiavimo mašinų gamykla pradėjo gaminti pirmuosius lietuviškus kompiuterius “Rūta”.

1986 metais “Nuklonas” pradėjo gaminti buitinius ir mokyklinius mikrokompiuterius BK 0010Š. Tais pačiais metais Kauno politechnikos institute kartu su Kauno radijo matavimų technikos MTI mokslininkais sukurtas pirmasis originalus lietuviškas asmeninis kompiuteris “Santaka”.

Literatūros sąrašas:

1)G. Leonavičius, R. Ališauskas, A. Balvočius, T. Balvočienė, V. Brazdeikis, V. Gudonienė, A. Miežinienė “Informatikos skaitiniai” Kaunas “Šviesa”, 1996.
2)A. Balčytienė, G. Leonavičius “Informatika 1” Vilnius “Baltic ECO”, 1997.
3) http://www.el.vtu.lt/
4) http://www.mcgradas.4mg.com

Leave a Comment