Достижения генной инженерии и биотехнологии

План:I. Введение.II. Биотехнология. 1. Возникновение биотехнологии. 2. Специфика биотехнологии. 3. Практические достижения биотехнологии.III. Генная инженерия. 1. Возникновение генной инженерии 2. Достижения генной инженерии. 3. Генная терапия.IV. Заключение.V. Список литературы.

Введение

В своей работе я раскрываю тему достижений генной инженерии и биотехнологии. Возможности, открываемые генетической инженерией перед че¬ловечеством как в области фундаментальной науки, так и во мно¬гих других областях, весьма велики и нередко даже революционны. Так, она позволяет осуществлять индустриальное массовое произ¬водство нужных белков, значительно облегчает технологические процессы для получения продуктов ферментации — энзимов и аминокислот, в будущем может применяться для улучшения растений и животных, а также для лечения наследственных болезней человека. Таким образом, генная инженерия, будучи одним из магистральных направлений научно-технического прогресса, активно способствует ускорению решения многих задач, таких, как продовольственная, сель¬скохозяйственная, энергетическая, экологическая. Но особенно большие возможности генная инженерия открывает перед медици¬ной и фармацевтикой, поскольку применение генной инженерии и гибридомных методов может привести к коренным преобразо¬ваниям медицины. Многие болезни, для которых в настоящее время не существует адекватных методов диагностики и лечения (раковые, сердечно-сосудистые, вирусные и паразитные инфекции, нервные и умственные расстройства), с помощью генной инжене¬рии и биотехнологии станут доступны и диагностике, и лечению. Под влиянием биотехнологии медицина может превратиться из преимущественно эмпирической в фундаментально теоретически обоснованную дисциплину с ясным пониманием происходящих в организме молекулярных и генетических процессов.

Биотехнология

Возникновение биотехнологии

Современная биотехнология — это новое научно-техническое направление, возникшее в 60—70-х годах нашего столетия. Осо¬бенно бурно она стала развиваться с середины 70-х годов после первых успехов генно-инженерных экспериментов. Несмотря на столь короткий срок своего существования, биотехнология прив¬лекла пристальное внимание как ученых, так и широкой общест¬венности. Биотехнология, в сущности, не что иное, как использо¬вание культур клеток бактерий, дрожжей, животных или растений, метаболизм и биосинтетические возможности которых обеспечивают выработку специфических ве¬ществ. Биотехнология на основе применения знаний и методов биохимии, генетики и химической техники дала возможность получения с помощью легко доступных, возобновляемых ресурсов тех веществ и которые важны для жизни и благосостояния. В промышленном масштабе подобная биотехнология представляет собой уже биоиндустрию. Одно из объяснений живого интереса к биотехнологии можно найти прежде всего в том, что именно к этому времени была осоз¬нана действительная острота глобальных проблем, вставших перед человечеством: нехватка продовольствия, ограниченность энер¬гии и минеральных ресурсов, резкое, почти катастрофическое, ухудшение окружающей среды и, как следствие, ухудшение здо¬ровья человека. Стало понятно, что огромный индустриально-про¬мышленный комплекс не только не помогает решить эти проблемы, но и еще более усугубляет их. Возникла настоятельная практическая потребность в принципиально новых технологиях и новых способах организации производства. В это же время физико-хими¬ческая биология в союзе с генетикой, молекулярной биологией и микробиологией предложили новую технологию, как будто способ¬ную помочь в решении этих проблем. Тем более что первые опыты биотехнологического производства дали неплохие результаты и потому позволили строить оптимистические планы на будущее.

Специфика биотехнологии

Биотехнология – чрезвычайно наукоемкая технология. Так, например, возникшая первой в США фирма «Дженетек» расходует 76 % доходов на исследовательские разработки вместо обычных для других фирм 12 %. Среди общего числа работников около 35 % составляют доктора наук.Таким образом, новая биотехнология—это больше научно-техническое новаторское направление, чем производственное, хотя и с довольно большими производственными перспективами. Однако это такое научно-техническое направление, которое само выступает производства, причем такого производства, которое уже не может сделать бук¬вально ни одного шага без глубоких фундаментальных и система¬тических прикладных научных разработок. Подчеркивая специфику новой технологии, т. е. отличая ее и от сельского хозяйства, и от традиционной промышленности, можно так определить биотехнологию: это технология промышленного применения и эксплуатации естественных и целенаправленно соз¬данных живых систем, прежде всего микроорганизмов, в качестве автоматически действующих сил природы для удовлетворения.Возникновение социальных проблем биотехнологии обуслов¬лено прежде всего тем, что это новое производство есть одно из важнейших направлений научно-технического прогресса, качест¬венно преобразующих содержание научно-технической революции. Есть все основания предполагать, что в недалеком будущем биотехнология превратится в одно из важнейших приоритетных направлений научно-технического прогресса и тем самым может привести к переосмыслению и самих критериев этого прогресса. Это предположение зиждется на том, что глобальные проблемы современности, и в особенности экологическую, продовольствен¬ную и энергетическую, очень трудно (если не невозможно) будет решать без самого непосредственного и широкого применения биотехнологии. Важнейшие социальные проблемы возникают также и в связи с тем, что развитие биотехнологии ведет к размы¬ванию традиционных границ между сельским хозяйством и про¬мышленностью. Более того, возникающая в настоящее время необходимость сначала экологизации, а затем и в более широком смысле биологизации всей производственной и хозяйственной деятельности человечества может привести не только к пере¬стройке и даже замене (сначала, конечно, частичной) привычного сельского хозяйства биотехнологией, но и к преобразованию промышленности и техники.

Практические достижения биотехнологии

С помощью биотехнологии получено множество продуктов для здравоохранения, сельского хозяйства, продовольственной и хи¬мической промышленности. Причем важно то, что многие из них не могли быть получены без применения биотехнологических способов. Особенно большие надежды связываются с попытками использования микроорганизмов и культур клеток для уменьшения загрязнения среды и производства энергии.

Генная инженерия

Возникновение генной инженерии

За последние 10—15 лет были созданы принципиально новые методы манипулирования с нуклеиновыми кисло¬тами in vitro, на основе которых зародился и бурно разви¬вается новый раздел молекулярной биологии и генетики — генная инженерия. Принципиальное отличие генной инже¬нерии от использовавшихся ранее традиционных приемов изменения состоит в том, что она дает возможность конструировать функционально активные генетические структуры in vitro в форме рекомбинантных ДНК. Понятия «генная» и «генетическая» инженерия ча¬сто употребляют как синонимы, хотя последнее является более широким и включает манипулирование не только с отдельными генами, но и с более крупными частями генома. Работа по переделке генотипа животных или ра¬стений с помощью скрещиваний ограничены пределами вида либо близких в видовом отношении форм. Напротив, генная инженерия, как будет показано ниже, стирает межвидовые барьеры, обеспечивая возможность создания организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств. Генная инженерия представляет собой совокупность методов, позволяющих не только получать реконбинантные ДНК из фрагментов геномов разных организмов, но и вводить такие рекомбинантные молекулы в клетку, создавая условия для экспрессии в ней введенных, часто совершенно чужеродных генов. Таким образом, в этом случае исследователь оперирует непосредственно с генами, причем их перенос может не зависеть от таксономического родства используемых организмов. Эта особенность генной инже¬нерии представляет ее главное отличие от ранее исполь¬зовавшихся приемов изменения генотипа.Первенствующую роль в формировании генной инженерии сыграла генетика микроорганизмов, идеи и методы, разработанные молекулярной генетикой и химией нуклеи¬новых кислот. Формальной датой рождения генной инженерии считают 1972 г., когда группа П. Берга в США соз¬дала первую рекомбинантиую ДНК in vitro, объединившую в своем составе генетический материал из трех источни¬ков: полный геном онкогенного вируса обезьян SV40, часть генома умеренного бактериофага К и гены галактозного оперона Е. coli. Сконструированная рекомбинантная моле¬кула не была исследована на функциональную активность, поскольку у авторов этой работы возникли опасения, что методы генной инженерии могут привести к появлению микроорганизмов, опасных для здоровья человека, напри¬мер бактерий Е. coil, способных перенести онкогенные вирусы животных в кишечник человека. Разработанные позднее правила работы с рекомбинантными молекулами позволили практически устранить возможность вредных последствий создания рекомбинантных ДНК, объединяю¬щих в своем составе гены разного происхождения.

Достижения генной инженерии

Генная инженерия открыла путь для производства продуктов белковой природы путем введения в клетки микроорганизмов искусственно синтезированных коди¬рующих их генов, где они могут экспрессироваться в составе гибридных молекул. Первой удачной попыткой такого рода стала работа К. Итакуры и Г. Бойера 1977г.В различных лабораториях в СССР и за рубежом были созданы штаммы, синтезирующие в составе гибрид¬ных белков гормон роста человека (соматотропин), пептидные гормоны — брадикинин и ангиотензин, нейропептид лей-энкефалин и др. В 1963 г. получены и клонированы гены, коди¬рующие глобины человека, животных и птиц, белок хруста¬лика глаза быка, яичный белок, фиброин шелка, проду¬цируемый тутовым шелкопрядом, и др. Этот же принцип был применен для получения, клонирования и экспрессии генов интерферона человека в бактериях. Интерферон — ценный лекарственный препарат, широко используемый для борьбы с вирусными инфекциями и лечения ряда других заболеваний, включая злокачественные опухоли. Интерферон вырабатывается в клетках животных и че¬ловека, но обладает выраженной видоспецифичностью. Ю. А. Овчинников и В. Г. Дебабов с сотрудниками по¬лучили микроорганизмы, эффективно синтезирующие интерфероны человека. В 1980 г. Итакура создал первый синтезатор генов. Вскоре после этого компания «Био-Лоджикалс» (Торонто) выпустила прибор, сконструированный Огилви в Универ¬ситете МакГилла в Монреале; прибор был способен в течение 6 ч синтезировать 12-членный олигонуклеотид с заданной последовательностью.В 1982 г. цена этих приборов на американ¬ском рынке составляла 36000—39500 долл. Коткрытиям связанным с достижениями генной инженерии нужно прибавить то, что огромный генетический «чертеж» многоклеточного существа просчитан полностью. Я думаю это можно назвать достижением века.В лабораториях мира полным ходом идет расшифровка генома человека. Эта международная программа была начата в 1989 году, ежедневно расшифровывается более миллиона нуклеотидных пар, причем темп работ все ускоряется. С 1990 года началось само секвенирование. Его темп составлял в 1992 году 1 миллион пар нуклеотидов в год. Если бы такой темп сохранился, на расшифровку всего генома понадобилось бы почти 100 лет! Ускорить работы удалось простейшим способом – число исследователей в каждом центре возросло примерно до 100. По мере того, как раскрывалась нуклеотидная последовательность ДНК Если у дрожжей функция половины генов в геноме неизвестна (так называемые молчащие гены), то у червя эта доля еще больше: из 19 тысяч генов 12 тысяч остаются пока загадочными. Программа “Геном человека”, как уже говорилось, – программа общечеловеческая. Каждая лаборатория, в какой бы стране она ни находилась, вносит в нее посильный вклад. И как только кому-то удается раскрыть структуру нового гена, эта информация немедленно поступает в Международный банк данных, доступный каждому исследователю.

Генная терапия

В настоящее время в мире около 400 проектов по генной терапии находятся на различных стадиях клинических испытаний: 261 из них проходит первую стадию (оценка токсичности), 133 – вторую (испытание на небольшой группе тяжелобольных пациентов) и только 3 проекта (два по лечению рака мозга и один по гемофилии) – на заключительной третьей стадии (масштабные клинические испытания). Пока генная терапия применяется в основном в онкологии (более 60% проектов). Примерно по 15% приходится на генную терапию инфекционных (СПИД, гепатит В, туберкулез) и моно генных заболеваний (муковисцидоз, семейная гиперхолестеринемия, мукополисахаридозы, гемофилия А и др.). Методы генной терапии позволяют лечить различные генетические патологии в период внутриутробного развития. Введенный ген или генная конструкция попадает во множество интенсивно делящихся клеток, предотвращая начало развития заболевания. После такой терапии нет необходимости искусственного прерывания беременности – ребенок рождается здоровым. Но тем не менее вопрос о ее целесообразности поднимается все чаще и чаще – теоретически существует опасность внедрения искусственных генных конструкций в геном половых клеток, что может привести к “засорению” генофонда. Генная терапия успешно применяется для лечения не только наследственных, но и значительно более распространенных мультифакториальных болезней (диабет, остеопороз, ревматоидный артрит, различные опухоли). Для лечения таких заболеваний применяется не одна, а сразу много генетических конструкций, исправляющих дефекты различных стадий течения патологического процесса.

Заключение

В заключение хочу сказать, что широкое использование микроорганизмов не может не порождать новых взаимоотношений с живой природой, что вполне естественно ведет к желанию осмыс¬лить сами эти взаимоотношения и соотнести их со сложившимися представлениями, с одной стороны, о роли живой природы в жизне¬деятельности человека, а с другой — о роли человека в биотиче¬ском круговороте биосферы. Имеющийся пока не слишком богатый опыт развития биотехноло¬гии все-таки содержит в себе много непривычного и вместе с тем многообещающего для возможной оптимизации человеческой жиз¬недеятельности. А остро вставшая перед Homo sapiens проблема самосохранения вынуждает его к лихорадочным поискам возмож¬ных вариантов стратегии своей жизнедеятельности. Этому привлечению природы, причем именно мира микроорганизмов, и положила начало новая биотехнология. Можно, видимо, сказать, что биотехнология в совокупности с другими научными направлениями открывает новую эру взаимодействия человека с ок¬ружающей средой и особенно с живым веществом биосферы. «Явившись прямым результатом научных разработок, биотех¬нология оказывается непосредственным единением науки и про¬изводства, еще одной ступенькой к единству познания и действования, еще одним шагом, приближающим человека к преодолению внешней и к постижению внутренней целесообразности».И все-таки только небольшим шагом. Поскольку, как метко заметил Б. Шоу, наука всегда ошибается. Она никогда не разре¬шает какой-то проблемы, не создав еще десять новых. Оценивая с этой позиции биотехнологию и весь комплекс наук, ее порож¬дающих и обеспечивающих, можно видеть, что и здесь вряд ли мы сможем достичь желанной цели: биотехнология и экологизированная традиционная промышленность слишком отягощены бре¬менем предшествующего. Она сама оказывается всего лишь круп¬ной индустрией, соединением технических и биологических элемен¬тов и, естественно, наследует отрицательные свойства уже суще¬ствующего индустриально-промышленного комплекса. Их действи¬тельное преодоление и решение проблемы человека предполагают выход человечества на новые, более совершенные ступени социокультурного развития, основанного на новых способах познания и действования.Поэтому весьма существенное значение приобретает проблема выбора стратегии взаимодействия человека и природы: или это самонадеянное управление природой или же сознательное и целенаправленное приспособление всей жизнедеятель¬ной деятельности, к существующему биотическому круговороту биосферы.В результате интенсивного развития методов генетической инженерии получены клоны множества генов рибосомальной, и транспортной, гистонов, глобина мыши, кролика, человека, коллагена, овальбумина, инсулина человека и др. пептидных гормонов, интерферона человека и прочее. Это позволило создавать штаммы бактерий, производящих многие биологически активные вещества, используемые в медицине, сельском хозяйстве и микробиологической промышленности. На основе генетической инженерии возникла отрасль фармацевтической промышленности, названная «индустрией ДНК». Это одна из современных ветвей биотехнологии. Для лечебного применения допущен инсулин человека (хумулин), полученный посредством рекДНК. Кроме того, на основе многочисленных мутантов по отдельным генам, получаемых при их изучении, созданы высокоэффективные тест-системы для выявления генетической активности факторов среды, в том числе для выявления канцерогенных соединений.

Список литературы

1. Сассон А. Биотехнология: свершения и надежды. М.: Мир, 19872. Карпинская Р.С. Биология в познании человека. М.: Наука, 19893. Алиханян С.И. Общая генетика. М.: Высшая школа, 19854. «Наука и жизнь», №9/20005. «Наука и жизнь», №3/19996. Интернетная страница www.5ballov.ru